RADIALL technical data sheet \quad R 595

HIGH PERFORMANCE DP3T-SPDT SWITCHES

DP3T - SPDT Coaxial Switches DC to 6 GHz , DC to 20 GHz , DC to 26.5 GHz

Radiall's PLATINUM SERIES switches are optimised to perform at a high level over an extended life span. With outstanding RF performances, and a guaranteed Insertion Loss repeatability of 0.03 dB over a life span of 10 million switching cycles. PLATINUM SERIES switches are perfect for automated test and measurement equipment, as well as signal monitoring devices.

PART NUMBER SELECTION

PICTURE

RADIALL TECHNICAL DATA SHEET $\mathbf{R} 595$

HIGH PERFORMANCE DP3T-SPDT SWITCHES

RF PERFORMANCES

PART NUMBER	R5953----	R5954----	R595F-----
Frequency Range GHz	DC to 6	DC to 20	DC to 26.5
Impedance Ohms		50	
Insertion Loss dB (Maximum)	$0.20+(0.45 / 26.5) \times$ frequency (GHz)		
Isolation dB (Minimum)	85	DC to 6 GHz $:$ 85 6 to 12.4 GHz $:$ 75 12.4 to 20 GHz $:$ 65	DC to $6 \mathrm{GHz}:$ 85 6 to 12.4 GHz $:$ 75 12.4 to $20 \mathrm{GHz}:$ 65 20 to $26.5 \mathrm{GHz}:$ 60
V.S.W.R. (Maximum)	1.15	DC to 6 GHz $:$ 6 to 12.4 GHz $\mathbf{:}$ 12.15 18 to 18 GHz 1.25 18 to 20 GHz $:$	DC to $6 \mathrm{GHz}:$ 1.15 6 to $12.4 \mathrm{GHz}:$ 1.25 12.4 to $18 \mathrm{GHz}:$ 1.30 18 to $26.5 \mathrm{GHz}:$ 1.60
Repeatability (Up to 10 million cycles measured at $25^{\circ} \mathrm{C}$)	0.03 dB maximum	0.03 dB maximum	0.03 dB maximum

TYPICAL RF PERFORMANCES

Insertion Loss and Isolation

RADIALL

RADIALL \quad TECHNICAL DATA SHEET \quad R 595

HIGH PERFORMANCE DP3T - SPDT SWITCHES

ADDITIONAL SPECIFICATIONS

ENVIRONMENTAL SPECIFICATIONS

Operating temperature range ${ }^{\circ} \mathrm{C}$	-25 to +75
Storage temperature range ${ }^{\circ} \mathrm{C}$	-55 to +85
Temperature cycling (MIL-STD-202F , Method 107D , Cond.A) ${ }^{\circ} \mathrm{C}$	-55 to +85 (10 cycles)
Sine vibration operating (MIL STD 202 , Method 204D , Cond.D)	$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$
Random vibration operating	16.91 g (rms) $50-2000 \mathrm{~Hz} 3 \mathrm{~min} / \mathrm{axis}$
Shock operating (MIL STD 202, Method 213B, Cond.G)	$50 \mathrm{~g} / 11 \mathrm{~ms}$, sawtooth
Humidity operating	15 to 95% relative humidity
Humidity storage (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 10$ days
Altitude operating	15,000 feet (4,600 meters)
Altitude storage (MIL STD 202, Method 105C , Cond.B)	50,000 feet (15,240 meters)

RADIALL technical data sheet R 595

HIGH PERFORMANCE DP3T - SPDT SWITCHES

SWITCH MODEL 1 : NON TERMINATED SPDT SWITCH

The non terminated SPDT switch is a single pole double throw switch. This switch is "break before make".

RF SCHEMATIC DIAGRAM

POSITION E1

POSITION INDICATORS

STATE "11"
Standard drive option "1" (Positive common):

- Connect pin +Vcc to supply.
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open).
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and close RF path 2-3).

D-Sub connector

Solder pins

POSITION E2

STATE "22"
TTL drive option " 2 "

- Connect pin GND to ground.
- Connect pin +Vcc to supply
- Select (close) desired RF path by applying TTL "High " to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open).
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path.
(Ex: apply TTL "High" to pin E2 to open RF path 1-2 and close RF path 2-3).

All dimensions are in inches/millimetres.

With D-Sub connector

With solder pins

RADIALL TECHNICAL DATA SHEET R 595

HIGH PERFORMANCE DP3T - SPDT SWITCHES

SWITCH MODEL 2 : TERMINATED SPDT SWITCH

The terminated SPDT switch is a single pole double throw switch. The unused ports are terminated into 50 ohms. This switch is "break before make".

RF SCHEMATIC DIAGRAM

POSITION E1

POSITION E2

STATE "22"
TTL drive option "2"

- Connect pin GND to ground.
- Connect pin +Vcc to supply
- Select (close) desired RF path by applying TTL "High " to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open).
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path.
(Ex: apply TTL "High" to pin E2 to open RF path 1-2 and close RF path 2-3).

D-Sub connector

Solder pins

RADIALL TECHNICAL DATA SHEET $\mathbf{R} 595$ HIGH PERFORMANCE DP3T - SPDT SWITCHES

All dimensions are in inches/millimetres.

With D-Sub connector

With solder pins

RADIALL technical data sheet \quad R 595

HIGH PERFORMANCE DP3T - SPDT SWITCHES

SWITCH MODEL 3 : TERMINATED 4 PORT BYPASS SWITCH

The terminated 4 port bypass switch can terminate into 50 ohms the device under test. These switches are "break before make".

RF SCHEMATIC DIAGRAM

POSITION E1

POSITION INDICATORS

STATE "11"
Standard drive option "1" (Positive common):

- Connect pin +Vcc to supply.
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 and RF path 3-4 closed and RF path 2-3 open).
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and 3-4 and close RF path 2-3).

POSITION E2

STATE "22"
TTL drive option " 2 "

- Connect pin GND to ground.
- Connect pin +Vcc to supply.
- Select (close) desired RF path by applying TTL "High " to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 and 3-4 closed and RF path 2-3 open).
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path.
(Ex: apply TTL "High" to pin E2 to open RF path 1-2 and 3-4 and close RF path 2-3).

D-Sub connector

Solder pins

RADIALL HIGH PERFORMANCE DP3T - SPDT SWITCHES

All dimensions are in inches/millimetres.

With D-Sub connector

With solder pins

8 pins $\varnothing 0.04$ / 1

RADIALL technical data sheet R 595

HIGH PERFORMANCE DP3T - SPDT SWITCHES

SWITCH MODEL 4 : NON TERMINATED 5 PORT DP3T SWITCH

The non terminated 5 port DP3T switch can used as SPDT with high power terminations, as a bypass switch. In this application, the fifth port can be terminated externally with a high power termination. These switches are "break before make".

RF SCHEMATIC DIAGRAM

POSITION E1

POSITION INDICATORS

STATE "11"
Standard drive option "1" (Positive common):

- Connect pin +Vcc to supply.
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 2-3 and RF path 4-5 closed and RF path 1-2 and RF path 3-4 open).
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 2-3 and 4-5 and close RF path 1-2 and 3-4).

D-Sub connector

Solder pins

POSITION E2

STATE "22"
TTL drive option "2"

- Connect pin GND to ground.
- Connect pin +Vcc to supply.
- Select (close) desired RF path by applying TTL "High " to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 2-3 and RF path 4-5 closed and RF path 1-2 and 3-4 open).
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path.
(Ex: apply TTL "High" to pin E2 to open RF path 2-3 and 4-5 and close RF path 1-2 and 3-4).
 HIGH PERFORMANCE DP3T - SPDT SWITCHES

All dimensions are in inches/millimetres.

With D-Sub connector

RADIALL TECHNICAL data sheet $\mathbf{R} 595$

 HIGH PERFORMANCE DP3T - SPDT SWITCHES
POWER RATING CHART

This graph is based on the following conditions :

- Ambient temperature : $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R. : 1 and cold switching

The average power input must be reduced for load V.S.W.R. above 1.

